

Weakly non-Boussinesq convection and convective overshooting in a gaseous spherical shell

Lydia Korre N. Brummell & P. Garaud

Advanced Modeling & Simulation (AMS) Seminar Series
NASA Ames Research Center

March 13, 2018

Motivation

Solar-type stars with outer convection zones

Image credit to ESA/NASA SOHO.

- Solar-type stars have thin outer convection zones (CZ) lying on top of a stable radiative zone (RZ).
- Nuclear burning in the core provides fixed flux of energy that must be transported to the surface.

Spherical shell geometry

- The simplest possible model is two concentric spherical shells with fixed flux coming through the inner boundary.
- Two cases studied:
 - convection only
 - convective overshooting

Part I

Weakly non-Boussinesq convection in a gaseous spherical shell

Dimensional SV Boussinesq equations * in a gaseous spherical shell

Let $T = T_{\rm rad}(r) + \Theta(r, \theta, \phi, t)$, then:

$$\nabla \cdot \boldsymbol{u} = 0$$
,

$$\frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{u} \cdot \nabla \boldsymbol{u} = -\frac{1}{\rho_m} \nabla \boldsymbol{p} + \alpha \Theta g \boldsymbol{e_r} + \nu \nabla^2 \boldsymbol{u},$$

$$\frac{\partial \Theta}{\partial t} + \boldsymbol{u} \cdot \nabla \Theta + u_r \left(\frac{dT_{\text{rad}}}{dr} - \left[\frac{dT_{\text{ad}}}{dr} \right] \right) = \kappa \nabla^2 \Theta,$$

and

$$\rho/\rho_m = -\alpha\Theta$$
, and $dT_{\rm ad}/dr = -g/c_p$

^{*}Spiegel and Veronis, Astrophys. J. 131, 442 (1960)

Radiative temperature gradient

$$-4\pi r^2 \kappa \frac{dT_{\rm rad}}{dr} = L_{\star} \Rightarrow \frac{dT_{\rm rad}}{dr} \propto \frac{1}{r^2}$$

Non-dimensional Boussinesq equations in a gaseous spherical shell

We then non-dimensionalize the problem by using the outer radius $[I]=r_o$ as the lengthscale, $[t]=r_o^2/\nu$ as the timescale, $[u]=\nu/r_o$ as the velocity scale and $[T]=\left|dT_{\rm rad}/dr-dT_{\rm ad}/dr\right|_{r=r_o}r_o$ as the temperature scale.

The non-dimensional equations are:

and

$$\nabla \cdot \boldsymbol{u} = 0,$$

$$\frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{u} \cdot \nabla \boldsymbol{u} = -\nabla p + \frac{\mathsf{Ra}_o}{\mathsf{Pr}} \Theta \boldsymbol{e_r} + \nabla^2 \boldsymbol{u},$$

$$\frac{\partial \Theta}{\partial t} + \boldsymbol{u} \cdot \nabla \Theta + \frac{\beta(r)}{\mathsf{Pr}} u_r = \frac{1}{\mathsf{Pr}} \nabla^2 \Theta.$$

Non-dimensional quantities

■ the Rayleigh number and the Rayleigh function

$$\mathsf{Ra}_o = \frac{\alpha g \left[\left| \frac{dT_{\mathrm{rad}}}{dr} - \frac{dT_{\mathrm{ad}}}{dr} \right| \right]_{r = r_o} r_o^4}{\nu \kappa}, \mathsf{Ra}(r) = \frac{\alpha g \left| \frac{dT_{\mathrm{rad}}}{dr} - \frac{dT_{\mathrm{ad}}}{dr} \right| r_o^4}{\nu \kappa}$$

the Prandtl number

$$Pr = \frac{\nu}{\kappa}$$

$$\beta(r) = \frac{\frac{dT_{\rm rad}}{dr} - \frac{dT_{\rm ad}}{dr}}{\left[\left|\frac{dT_{\rm rad}}{dr} - \frac{dT_{\rm ad}}{dr}\right|\right]} = -\frac{\mathsf{Ra}(r)}{\mathsf{Ra}_o} \Rightarrow \boxed{\beta(r) = \frac{1 - \chi - (1/r)^2}{\chi}},$$

where

$$\chi = \left[\left| \frac{dT_{\rm rad}}{dr} - \frac{dT_{\rm ad}}{dr} \right| \right]_{r=r_*} / \left| \frac{dT_{\rm rad}}{dr} \right|_{r=r_*}$$

Profile of $\beta(r)$ - Model A

- In a Cartesian geometry $\beta = -1$.
- In a spherical shell $\chi=1$ and $\beta=-1/r^2$ for liquids (i.e. when $dT_{\rm ad}/dr=0$), so there is still the effect of sphericity.
- $dT_{\rm ad}/dr \neq 0$ enhances that effect (while χ becomes smaller).
- In a weakly compressible spherical shell, the Rayleigh function is NOT constant unlike in Rayleigh-Bénard convection.

What is the effect of a varying $\beta(r)$ then?

Numerical simulations

- 3D DNS solving the Boussinesq equations in a spherical shell with $r_i = 0.7$ and $r_o = 1$. (PARODY code)[†]
- Stress-free boundary conditions for the velocity.
- Fixed flux at the bottom:

$$\frac{\partial \Theta}{\partial r} = 0|_{r=0.7}$$
 and

fixed temperature at the top: $\Theta = 0|_{r=1}$.

 \blacksquare Ra_o = 10⁷, Pr= 0.1

Aubert, J., Aurnou, J., & Wicht, J. 2008, Geophysical Journal International, 172, 945 Dormy, E., Cardin, P., & Jault, D. 1998, Earth and Planetary Science Letters, 160, 15

Velocity slices snapshots

 $\chi = 0.1$

 $\chi = 0.5$

Kinetic Energy profiles

Figure: a) Kinetic energy plot with respect to time for $Ra_o=10^7$, Pr=0.1 and three different χ . The system has reached a statistically steady state and it has thermally relaxed. b) Time-averaged kinetic energy for $Ra_o=10^7$ and Pr=0.1.

Square of the non-dimensional buoyancy frequency profile

$$\bar{N}^2(r)=(\beta(r)+d\bar{\Theta}/dr)rac{{
m Ra}_o}{{
m Pr}}$$
 (solid lines) along with the radiative buoyancy frequency $N_{
m rad}^2(r)=\beta(r)rac{{
m Ra}_o}{{
m Pr}}$ (dashed lines)

- 1. What are the properties of this slightly subadiabatic region emerging close to the outer boundary?
- 2. Which of the physics elements lead to the subadiabatic layer?
 - \rightarrow Is it related to the varying Rayleigh function configuration of Model A?

Now, let's create a new model, Model B, where we have a constant Rayleigh function across the shell.

Spherical shell with a constant Rayleigh function

We can create a constant Rayleigh function across the shell by varying the thermal expansion coefficient $\alpha(r)/\alpha_o$ such that:

$$Ra(r) = -\frac{\alpha(r)g\left(\frac{dT_{\rm rad}}{dr} - \frac{dT_{\rm ad}}{dr}\right)r_o^4}{\kappa\nu} = -Ra_o \cdot \frac{\alpha(r)}{\alpha_o} \cdot \beta(r) = Ra_o,$$

as long as

$$\frac{\alpha(r)}{\alpha_o} = -\frac{1}{\beta(r)},$$

where
$$\beta(r) = \frac{1 - \chi - (1/r^2)}{\chi}$$
 as in Model A.

KE profiles - Model A

KE profiles - Model A and B

Mean kinetic energy E vs. bulk Rayleigh number Rab

$$E = C(Pr, r_i/r_o)Ra_b^{0.72} \approx 3.7Ra_b^{0.72}, Ra_b = \frac{\int_{r_i}^{r_o} Ra(r)r^2dr}{\int_{r_o}^{r_o} r^2dr}$$

Square of the non-dimensional buoyancy frequency profiles

$$ar{N}^2(r) = rac{lpha(r)}{lpha_o} \left(eta(r) + rac{dar{\Theta}}{dr}
ight) rac{{
m Ra}_o}{{
m Pr}}$$
 compared with the background $N_{
m rad}^2 = rac{lpha(r)}{lpha_o} [eta(r)] rac{{
m Ra}_o}{{
m Pr}} \ ^{\ddagger}$

[‡]In this setup all the simulations have the same background $N_{
m rad}^2 {
m Pr/Ra}_o = -1$ regardless of χ .

Velocity u_{ϕ} snapshots and kinetic energy for $\chi=0.01$

Results implicitly related to the choice of BCs on Θ :

■ Flux at r_i : $d\Theta/dr|_{r_i} = 0 \Rightarrow$ Flux at r_o : $d\Theta/dr|_{r_o} = 0$ when the system is in thermal equilibrium.

$$ightarrow$$
 $F_T=0$ in equilibrium \Rightarrow turbulent flux+diffusive flux= $0 \Rightarrow \bar{F}_{turb}=\frac{1}{\Pr}\frac{d\bar{\Theta}}{dr}$:

$$\bar{N}^{2}(r) = \frac{\alpha(r)}{\alpha_{o}} [\beta(r) + d\bar{\Theta}/dr] \frac{Ra_{o}}{Pr} = \frac{\alpha(r)}{\alpha_{o}} [\beta(r) + Pr\bar{F}_{turb}] \frac{Ra_{o}}{Pr}$$

Solar-like $\beta(r)$ profile

$ar{\it N}^2(r){ m Pr}/{ m Ra}_o$ profile for ${ m Ra}_o=10^7$

subadiabatic layer still exists, now closer to the inner boundary!

Summary

- The mean kinetic energy depends solely on the bulk Ra_b such that $E \propto Ra_b^{0.72}$.
- Emergence of subadiabatic region due to:
 - 1. mixed temperature boundary conditions,
 - 2. sufficiently turbulent flows (high Ra), and enhanced by:
 - 3. large superadiabaticity contrast (i.e. strongly varying $\beta(r)$ (low χ)).
- Convection vigorous everywhere: highly non-local convection!

Part II

Convective overshooting and penetration in a spherical shell

Overshooting and penetrative convection

- In solar-like stars the bottom of the CZ is not impermeable but instead it sits on top of a stable RZ.
- Convective eddies can propagate into the RZ through inertia, which is commonly referred to as overshooting.
- This can cause both chemical and thermal mixing.
- Past studies distinguish between two regimes:
 1) overshooting: plumes only mix chemical species
 - 2) penetrative: the effect is so strong as to extend the CZ (beyond what linear theory predicts).

Spherical shell and BCs

- fixed flux at the inner boundary at $r_i = 0.2$
- fixed temperature at the outer boundary at $r_o = 1$
- CZ-RZ interface located at $r_t = 0.7$

Non-dimensional Equations

The non-dimensional equations are as before:

$$\nabla \cdot \boldsymbol{u} = 0$$
,

$$\frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{u} \cdot \nabla \boldsymbol{u} = -\nabla p + \frac{\mathsf{Ra}_o}{\mathsf{Pr}} \Theta \boldsymbol{e_r} + \nabla^2 \boldsymbol{u},$$

and

$$\frac{\partial \Theta}{\partial t} + \boldsymbol{u} \cdot \nabla \Theta + \beta(r) u_r = \frac{1}{\mathsf{Pr}} \nabla^2 \Theta,$$

where now $\beta(r)$ is chosen such that we have:

- a convectively stable RZ for r < 0.7
- a convectively unstable CZ for $r \ge 0.7$.

Profile of $\beta(r)$

stiffness parameter S: defines how stable the RZ is to convection. transition width (d_{out}) : defines the steepness of the transition slope

Non-dimensional quantities

The Rayleigh number and the Rayleigh function

$$Ra_{o} = \frac{\alpha g \left[\left| \frac{dT_{rad}}{dr} - \frac{dT_{ad}}{dr} \right| \right]_{r=r_{o}} r_{o}^{4}}{\nu \kappa}$$

$$Ra(r) = -\frac{\alpha g \left(\frac{dT_{rad}}{dr} - \frac{dT_{ad}}{dr}\right) r_o^4}{\nu \kappa}$$

- Pr= $\nu/\kappa = 0.1$ for all the simulations.
- lacksquare $\beta(r)$ is also $\beta(r) = -Ra(r)/Ra_o$.

Note: When Ra in the CZ increases, the RZ becomes more stable.

Meridional velocity snapshots for S=5, $d_{out}=0.003$ and $\mathrm{Ra}_o=10^7$

KE for S = 5, $d_{out} = 0.003$ and $Ra_o = 10^7$

Log plot of \bar{E}_k

- Looks like a Gaussian below $r_t = 0.7$
 - Gaussian fit function $f(r) = A \exp\left(-\left(\frac{r 0.7}{\sqrt{2}\delta_G}\right)^2\right)$
- A is the amplitude of the Gaussian.
- δ_G is the width of the Gaussian which gives a relative measure of how far the turbulent convective motions can on average travel into the stable RZ.

Kinetic Energies \bar{E}_k for all the different input parameters

- mean kinetic energy in the CZ depends only on the bulk Ra_b.
- \bar{E}_k scales like a Gaussian right below the bottom of the CZ for all the different simulations.

Prediction of the Gaussian amplitude A

$$f(r) = A \exp\left(-\left(\frac{r-0.7}{\sqrt{2}\delta_G}\right)^2\right)$$
, $A \approx E_{CZ} = 3.7 \mathrm{Ra}_\mathrm{b}^{0.72}$

δ_G against d_{out} and S

δ_G depends on the input parameters S, d_{out} , and Ra_o

But, can we also predict δ_G a priori?

Energetic argument for calculation of δ

Take a plume that starts from the base of the CZ with a mean KE of the CZ and travels inertially and adiabatically downward.

At the point at which Kinetic Energy=Potential energy, it will turn around!

If the energetic argument is correct \rightarrow any lengthscale will scale like δ_{en} !

Auto-correlation function for the downflows

$$C(\delta) = \frac{1}{4\pi} \int_{t_*}^{t_2} \int_{0}^{2\pi} \int_{0}^{\pi} u_r(0.7, \theta, \phi) H(-u_r(0.7, \theta, \phi)) u_r(0.7 - \delta, \theta, \phi) \sin\theta d\theta d\phi dt$$

Back to \bar{E}_k

- The Gaussian part of \bar{E}_k stops where $\delta_{u_{cor}}$ is defined!
- After that point, \bar{E}_k decays exponentially.

Penetrative convection

Is convection penetrative?

$$S = 5$$
, $d_{out} = 0.003$ and $Ra_o = 10^7$

No penetration... But there is partial thermal mixing in the RZ!

Temperatures for S = 5, $d_{out} = 0.003$ and $Ra_o = 10^7$

 $\bar{\Theta}_{down}$: mean temperature of the downflows

 $\bar{\Theta}_{up}$: mean temperature of the upflows

 Θ_{ad} : adiabatic temperature

- Downflows carry cold material downward.
- They heat up while in the RZ due to adiabatic compression.
- Then they decelerate and match the mean temperature.
- Upflows have the exact opposite behavior.

 δ_{Θ} gives a new lengthscale for thermal mixing!

Temperatures for S = 5, $d_{out} = 0.003$

Thermal mixing in the RZ

Thermal mixing in the RZ

- With higher Ra_o, the thermal mixing is shallower but more efficient!
- If we then increased Ra_o, could we finally see pure penetration?

Comparison of the different lengthscales

All the different lengthscales scale well with

Conclusions

- No pure penetration, but not just overshooting either:
 - → Intermediate regime where there is partial thermal mixing in the RZ!
- The kinetic energy scales like a Gaussian below $r_t = 0.7$.
 - → We can actually model that region!
- All the different lengthscales scale well with δ_{en} .
 - \rightsquigarrow Then, we can predict $\delta_{\Theta,u_{cor}} \approx 3\delta_{en}$, and $\delta_{G} = 1.2\delta_{en}$.

Future goals

Models of the interior of the Sun rely on having a primordial magnetic field in the RZ.

Figure from Gough & McIntyre (1998) paper

- Add magnetic field in the RZ.
- Study the interaction of the field with the turbulent motions:
- Can the field confine the overshooting motions from going deeper in the RZ?
- 2. Can these motions halt the magnetic field from diffusing outward into the CZ?

...Extra slides...

Model	χ	Ra_o	N_r	N_{θ}	N_{ϕ}
(a)	0.1	10^{7}	250	402	480
(a)	0.5	10^{7}	220	346	384
(a)	1	10^{7}	220	346	384
(b)	0.01	10^{6}	200	192	192
(b)	0.01	10^{7}	200	288	320
(b)	0.01	10^{8}	300	516	640
(b)	0.1	10^{7}	200	288	320
(b)	0.1	10^{8}	300	516	640
(b)	0.5	10^{7}	200	288	320
(c)	0.01	10^{7}	200	288	320
(c)	0.1	10^{7}	200	288	320

$$\kappa \nabla^2 T_{\text{rad}} = -H(r). \tag{1}$$

BCs:

$$-\kappa \frac{dT_{\rm rad}}{dr}\Big|_{r=r_{\rm r}} = F_{\rm rad}, \quad T(r_{\rm o}) = T_{\rm o}. \tag{2}$$

Integrating equation (1) once yields

$$\kappa \frac{dT_{\rm rad}}{dr} + F_{\rm rad} = -\int_{r_{\rm c}}^{r} H dr,\tag{3}$$

hence we can generate any functional form we desire for $dT_{\rm rad}/dr$ with a suitable choice of H(r).

